The Wigner time delay, defined by the energy derivative of the total scattering phase shift, is an important spectral measure of an open quantum system characterising the duration of the scattering event. It is related to the trace of the Wigner-Smith matrix Q that also encodes other time-delay characteristics. For chaotic cavities, these exhibit universal fluctuations that are commonly described within random matrix theory. Here, we develop a new semiclassical approach to the time-delay matrix which is formulated in terms of the classical trajectories that connect the exterior and interior regions of the system. This approach is superior to previous treatments because it avoids the energy derivative. We demonstrate the method's efficiency by going beyond previous work in studying the time-delay statistics for chaotic cavities with perfectly connected leads. In particular, the universality for moment generating functions of the proper time-delays (eigenvalues of Q) is established up to third order in the inverse number of scattering channels for systems with and without time-reversal symmetry. Semiclassical results are then obtained for a further two orders. We also show the equivalence of random matrix and semiclassical results for the second moments and for the variance of the Wigner time delay at any channel number.


翻译:由全散射阶段转移的能量衍生物定义的闪光延迟时间是显示散射事件持续时间的开放量子系统的一个重要光谱度量度。 它与显示其他时间间隔特性的闪光- Smith 矩阵 Q 的追踪有关。 对于混乱的洞穴, 这些显示普遍波动, 通常在随机矩阵理论中描述 。 在这里, 我们开发一种新的半古典方法, 用来测量时间间隔矩阵, 以连接系统外部和内部的经典轨迹为公式。 这个方法优于先前的处理方法, 因为它避免了能量衍生物 。 我们展示了方法的效率, 因为它超越了以往研究时间间隔统计的功能, 并记录了与完全连接的导线。 特别是, 随机矩阵理论中, 这些瞬间生成适当时间间隔函数( Q 的精度值) 的普遍性被确定为第三顺序, 与系统和不具有时间- 反向的系统相交错的分布渠道数量为逆数 。 然后, 与以前的处理方法相比优于先前的处理方法优于先前的处理方法 。 我们展示了方法的效率效率, 。 我们展示了该方法的效率, 其次等值结果是在两个方向上, 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员