This paper presents a novel federated linear contextual bandits model, where individual clients face different $K$-armed stochastic bandits coupled through common global parameters. By leveraging the geometric structure of the linear rewards, a collaborative algorithm called Fed-PE is proposed to cope with the heterogeneity across clients without exchanging local feature vectors or raw data. Fed-PE relies on a novel multi-client G-optimal design, and achieves near-optimal regrets for both disjoint and shared parameter cases with logarithmic communication costs. In addition, a new concept called collinearly-dependent policies is introduced, based on which a tight minimax regret lower bound for the disjoint parameter case is derived. Experiments demonstrate the effectiveness of the proposed algorithms on both synthetic and real-world datasets.


翻译:本文展示了一个新的联盟线性背景强盗模型,在这个模型中,个体客户面临不同的KK美元武装随机强盗,并通过共同的全球参数来面对不同的全球参数。 通过利用线性奖赏的几何结构,一个名为Fed-PE的协作算法(Fed-PE)被提出来应对客户之间的异质性,而不必交换本地地物矢量或原始数据。 Fed-PE依靠一种新型的多客户G-最佳设计,并实现几乎最佳的遗憾,因为使用对数通信成本的脱节和共享参数案例。此外,还引入了一个新的概念 — — 共线性政策 — — 在此基础上,得出了紧凑的迷你牛对脱节参数案例的下限。 实验显示了合成和真实世界数据集的拟议算法的有效性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Arxiv
0+阅读 · 2021年12月24日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Graph-Based Recommendation System
Arxiv
4+阅读 · 2018年7月31日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Top
微信扫码咨询专知VIP会员