The Track-1 of DSTC9 aims to effectively answer user requests or questions during task-oriented dialogues, which are out of the scope of APIs/DB. By leveraging external knowledge resources, relevant information can be retrieved and encoded into the response generation for these out-of-API-coverage queries. In this work, we have explored several advanced techniques to enhance the utilization of external knowledge and boost the quality of response generation, including schema guided knowledge decision, negatives enhanced knowledge selection, and knowledge grounded response generation. To evaluate the performance of our proposed method, comprehensive experiments have been carried out on the publicly available dataset. Our approach was ranked as the best in human evaluation of DSTC9 Track-1.


翻译:DSTC9第1轨旨在在任务导向对话期间有效回答用户的要求或问题,这些要求或问题不属于API/DB的范围。通过利用外部知识资源,可以检索相关信息,并将其编码成对非API覆盖性查询的响应生成。在这项工作中,我们探索了若干先进技术,以加强对外部知识的利用,提高反应生成的质量,包括以计划为指导的知识决策、负面的知识选择和基于知识的响应生成。为了评估我们拟议方法的绩效,在可公开获取的数据集上进行了全面试验。我们在DSTC9轨1的人文评估中将我们的方法列为最佳方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员