This article establishes general conditions for posterior consistency of Bayesian finite mixture models with a prior on the number of components. That is, we provide sufficient conditions under which the posterior concentrates on neighborhoods of the true parameter values when the data are generated from a finite mixture over the assumed family of component distributions. Specifically, we establish almost sure consistency for the number of components, the mixture weights, and the component parameters, up to a permutation of the component labels. The approach taken here is based on Doob's theorem, which has the advantage of holding under extraordinarily general conditions, and the disadvantage of only guaranteeing consistency at a set of parameter values that has probability one under the prior. However, we show that in fact, for commonly used choices of prior, this yields consistency at Lebesgue-almost all parameter values -- which is satisfactory for most practical purposes. We aim to formulate the results in a way that maximizes clarity, generality, and ease of use.
翻译:本条为Bayesian 有限混合物模型的后置一致性规定了一般条件,并先在部件数量上设定。 也就是说,我们提供了足够条件,使后继者在数据由一定的混合物生成时,将注意力集中在真实参数值的附近地区,而数据是在假设的成分分布组群的假设组合中生成的。具体地说,我们几乎肯定了成分数量、混合物重量和成分参数的一致性,直至部件标签的调整。这里采取的方法以Doob的理论为基础,该理论的优点是,在异常的一般条件下保持,而仅保证在有可能在先前情况下维持的一组参数值的一致性,其缺点是。然而,我们表明,事实上,对于通常使用的先前选择,这一参数在Lebesgue几乎所有参数值上都具有一致性,这对大多数实际目的来说是令人满意的。我们的目标是以最大限度的清晰度、普遍性和使用方便度的方式制定结果。