Kernel-based modal statistical methods include mode estimation, regression, and clustering. Estimation accuracy of these methods depends on the kernel used as well as the bandwidth. We study effect of the selection of the kernel function to the estimation accuracy of these methods. In particular, we theoretically show a (multivariate) optimal kernel that minimizes its analytically-obtained asymptotic error criterion when using an optimal bandwidth, among a certain kernel class defined via the number of its sign changes.
翻译:可基于核的模态统计方法包括模态估计、回归和聚类。这些方法的估计精度取决于所使用的核函数以及带宽。本文研究了核函数的选择对这些方法的估计精度的影响。特别的,我们理论上证明了一个(多元的)在一定核类中定义且通过其变号次数限制的核函数的优化核函数,该优化核函数在使用最优带宽时最小化理论推导得到的渐近误差准则。