Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-crafted designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes.
翻译:云层光谱截面是一个具有挑战性的任务,它寻求对语义和实例分割的整体解决方案,以预测一致点的组合。 先前的方法将语义和实例分割作为代理任务处理, 并且使用集束方法或捆绑框收集具有昂贵计算和手工设计图案分离任务中的实验组合。 在本文中, 我们提出一个简单而有效的点云统一光谱分割框架( PUPS), 该框架使用一组点级分类器, 直接以端到端的方式预测语义和实例组合。 为了实现 PUPS, 我们引入了与我们培训管道的双方对齐, 以便我们的分类者能够完全预测事件组合, 摆脱手工艺设计, 例如锚和手工艺设计( NMS ) 。 为了实现更好的组合结果, 我们使用变压器解色器对点分类器对点分类器进行迭接, 并开发一个环境觉识的 CutMix加增度, 以克服阶级失衡问题。 作为结果, PUPS在S- Stan- SS 任务端端端端端端端端端端端端端端列头端端端端端的S- 。