To better exploit search logs and model users' behavior patterns, numerous click models are proposed to extract users' implicit interaction feedback. Most traditional click models are based on the probabilistic graphical model (PGM) framework, which requires manually designed dependencies and may oversimplify user behaviors. Recently, methods based on neural networks are proposed to improve the prediction accuracy of user behaviors by enhancing the expressive ability and allowing flexible dependencies. However, they still suffer from the data sparsity and cold-start problems. In this paper, we propose a novel graph-enhanced click model (GraphCM) for web search. Firstly, we regard each query or document as a vertex, and propose novel homogeneous graph construction methods for queries and documents respectively, to fully exploit both intra-session and inter-session information for the sparsity and cold-start problems. Secondly, following the examination hypothesis, we separately model the attractiveness estimator and examination predictor to output the attractiveness scores and examination probabilities, where graph neural networks and neighbor interaction techniques are applied to extract the auxiliary information encoded in the pre-constructed homogeneous graphs. Finally, we apply combination functions to integrate examination probabilities and attractiveness scores into click predictions. Extensive experiments conducted on three real-world session datasets show that GraphCM not only outperforms the state-of-art models, but also achieves superior performance in addressing the data sparsity and cold-start problems.
翻译:为了更好地利用搜索日志和模型用户的行为模式,提出了许多点击模型,以提取用户的隐含互动反馈。大多数传统点击模型都以概率图形模型框架为基础,该框架需要人工设计的依赖性,可能过于简单化用户的行为。最近,提出了基于神经网络的方法,以便通过提高表达能力和允许灵活的依赖性来提高用户行为的预测准确性。然而,它们仍然受到数据宽度和冷启动问题的影响。在本文中,我们提议为网络搜索采用新的图表强化点击模型(GraphCM)模型(GraphCM)。首先,我们把每个查询或文件都视为一个顶部,并为查询和文件分别提出新的同质图形构建方法,以便充分利用会期内和会期间信息,以缓解和冷启动问题。第二,在检查假设之后,我们分别将吸引力估计和检查预测器建模预测器建模仅仅输出吸引力分数和概率。我们用图表网络和邻居互动技术来提取精细度信息,用于将精细度图像解度和文件作为升级的图解,最后,我们用直观度测试的模型将模拟模型和直径分析模型进行。