This paper presents a linear dynamical operator described in terms of a rational transfer function, endowed with a well-defined and efficient back-propagation behavior for automatic derivatives computation. The operator enables end-to-end training of structured networks containing linear transfer functions and other differentiable units {by} exploiting standard deep learning software. Two relevant applications of the operator in system identification are presented. The first one consists in the integration of {prediction error methods} in deep learning. The dynamical operator is included as {the} last layer of a neural network in order to obtain the optimal one-step-ahead prediction error. The second one considers identification of general block-oriented models from quantized data. These block-oriented models are constructed by combining linear dynamical operators with static nonlinearities described as standard feed-forward neural networks. A custom loss function corresponding to the log-likelihood of quantized output observations is defined. For gradient-based optimization, the derivatives of the log-likelihood are computed by applying the back-propagation algorithm through the whole network. Two system identification benchmarks are used to show the effectiveness of the proposed methodologies.


翻译:本文介绍一个线性动态操作员,以合理传输功能的方式描述线性动态操作员,该操作员拥有为自动衍生物计算而定义明确和高效的后向分析行为。操作员能够对结构化网络进行端到端培训,这些结构化网络包含线性转移功能和其他不同的单位,{通过}利用标准的深层学习软件。介绍了操作员在系统识别方面的两个相关应用。第一个应用在深层学习中结合了{预测错误方法}。动态操作员作为神经网络的最后一层{the}被包括在内,以便获得最佳的单步头预测错误。第二个应用考虑从四分解数据中确定一般块导向模型。这些块导向模型是通过将线性动态操作员与静态非线性结合起来构建的,这些静态非线性被描述为标准的向导线性网络。定义了与四分解输出观测的逻辑相似性相关的自定义损失功能。对于基于梯度的优化,通过在整个网络中应用后方调整算算法计算出类似日志的衍生物。两个系统识别基准用于显示拟议方法的有效性。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
210+阅读 · 2020年1月13日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
李宏毅-201806-中文-Deep Reinforcement Learning精品课程分享
深度学习与NLP
15+阅读 · 2018年6月20日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
14+阅读 · 2020年12月17日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
李宏毅-201806-中文-Deep Reinforcement Learning精品课程分享
深度学习与NLP
15+阅读 · 2018年6月20日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
14+阅读 · 2020年12月17日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员