We establish an identity for E f (Y) -E f (X), when X and Y both have matrix variateskew-normal distributions and the function f fulfills some weak conditions. Thecharacteristic function of matrix variate skew normal distribution is then derived. Finally,we make use of it to derive some necessary and sucient conditions for the comparisonof matrix variate skew-normal distributions under six di erent orders, such as usualstochastic order, convex order, increasing convex order, upper orthant order,directionally convex order and supermodular order.


翻译:当 X 和 Y 都有 矩阵 变式 正常 分布 和 函数 f 满足 某些 薄弱 条件 时, 我们为 E f (Y) - E f (X) 确定 身份 。 然后, 我们就可以得出 矩阵 变式 扭曲 正常 分布 的 属性 。 最后, 我们利用 矩阵 生成 某些 必要 和 纯 的条件, 用于 比较 矩阵 变式 正常 分布 的 6 di 命令 的 矩阵 变式 变式 正常 分布, 例如 通常的 切换 顺序 、 共 顺序 、 增加 共 共 顺序 、 上 或 超 顺序 、 直向 共 顺序 和 超 模式 等 。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
6+阅读 · 2020年9月29日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员