Extensive work has demonstrated the excellent performance of orthogonal time frequency space (OTFS) modulation in high-mobility scenarios. Time-variant wideband channel estimation serves as one of the key compositions of OTFS receivers since the data detection requires accurate channel state information (CSI). In practical wideband OTFS systems, the Doppler shift brought by the high mobility is frequency-dependent, which is referred to as the Doppler Squint Effect (DSE). Unfortunately, DSE was ignored in overall prior estimation schemes employed in OTFS systems, which leads to severe performance loss in channel estimation and the consequent data detection. In this paper, we investigate DSE of wideband time-variant channel in delay-Doppler domain and concentrate on the characterization of OTFS channel coefficients considering DSE. The formulation and evaluation of OTFS input-output relationship are provided for both ideal and rectangular waveforms considering DSE. The channel estimation is therefore formulated as a sparse signal recovery problem and an orthogonal matching pursuit (OMP)-based scheme is adopted to solve it. Simulation results confirm the significance of DSE and the performance superiority compared with traditional channel estimation approaches ignoring DSE.


翻译:广泛的工作表明,在高移动情景中,正心时频空间(OTFS)的调节工作表现优异;由于数据检测需要准确的频道状态信息(CSI),时间差宽频频道估计是OTFS接收器的主要构成之一;在实际的宽频OTFS系统中,高流动性带来的多普勒转换取决于频率,称为多普勒-角效应(DSE)。遗憾的是,在OTFS系统采用的总体前估计办法中,DSE被忽略了,这导致频道估计和随后的数据探测方面的性能严重损失。在本文件中,我们调查延迟-多普勒域的宽波段时空通道DSEDSE的DSE,集中研究考虑DSE的OTFS频道系数特征。在考虑DSE时,对OTFS的输入-输出值关系的拟订和评价是针对理想和矩形波形波形的。因此,频道估计是作为一个稀疏信号恢复问题和或多调匹配的追踪(OMP)方案,从而解决了频道估计。在延迟-Doppler-OP域域域域域域域域域域域域域域域内,我们将采用了对DSE的预测方法,从而解决了它。SE-SEma平比DSE-SE-SE的进度方法,从而确认了传统优越性评估方法,从而确认了了DSE的进度评估方法,从而确认了了DSEs。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月30日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员