In recent years, a great deal of attention has been paid to the Transformer network for speech recognition tasks due to its excellent model performance. However, the Transformer network always involves heavy computation and large number of parameters, causing serious deployment problems in devices with limited computation sources or storage memory. In this paper, a new lightweight model called Sim-T has been proposed to expand the generality of the Transformer model. Under the help of the newly developed multiplexing technique, the Sim-T can efficiently compress the model with negligible sacrifice on its performance. To be more precise, the proposed technique includes two parts, that are, module weight multiplexing and attention score multiplexing. Moreover, a novel decoder structure has been proposed to facilitate the attention score multiplexing. Extensive experiments have been conducted to validate the effectiveness of Sim-T. In Aishell-1 dataset, when the proposed Sim-T is 48% parameter less than the baseline Transformer, 0.4% CER improvement can be obtained. Alternatively, 69% parameter reduction can be achieved if the Sim-T gives the same performance as the baseline Transformer. With regard to the HKUST and WSJ eval92 datasets, CER and WER will be improved by 0.3% and 0.2%, respectively, when parameters in Sim-T are 40% less than the baseline Transformer.


翻译:近年来,Transformer网络在语音识别任务中的出色性能备受关注。然而,Transformer网络通常需要大量计算和参数,导致在计算资源或存储内存有限的设备上存在严重的部署问题。因此,在本文中,我们提出了一个名为Sim-T的新型轻量级模型,以扩展Transformer模型的通用性。借助新开发的多路复用技术,Sim-T可以高效地压缩模型,并在性能上几乎不会做出任何牺牲。具体而言,所提出的技术包括模块权重多路复用和注意力分数多路复用两部分。此外,为促进注意力分数多路复用,还提出了一种新的解码器结构。我们进行了广泛的实验,以验证Sim-T的有效性。在Aishell-1数据集中,当提出的Sim-T的参数比基线Transformer低48%时,可以获得0.4%的CER改进。另外,如果Sim-T的性能与基线Transformer相同,则可以实现69%的参数减少。对于HKUST和WSJ eval92数据集,当Sim-T的参数比基线Transformer低40%时,CER和WER分别提高了0.3%和0.2%。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员