Two-sample tests are important areas aiming to determine whether two collections of observations follow the same distribution or not. We propose two-sample tests based on integral probability metric (IPM) for high-dimensional samples supported on a low-dimensional manifold. We characterize the properties of proposed tests with respect to the number of samples $n$ and the structure of the manifold with intrinsic dimension $d$. When an atlas is given, we propose two-step test to identify the difference between general distributions, which achieves the type-II risk in the order of $n^{-1/\max\{d,2\}}$. When an atlas is not given, we propose H\"older IPM test that applies for data distributions with $(s,\beta)$-H\"older densities, which achieves the type-II risk in the order of $n^{-(s+\beta)/d}$. To mitigate the heavy computation burden of evaluating the H\"older IPM, we approximate the H\"older function class using neural networks. Based on the approximation theory of neural networks, we show that the neural network IPM test has the type-II risk in the order of $n^{-(s+\beta)/d}$, which is in the same order of the type-II risk as the H\"older IPM test. Our proposed tests are adaptive to low-dimensional geometric structure because their performance crucially depends on the intrinsic dimension instead of the data dimension.


翻译:双模测试是重要领域, 旨在确定两组观测集是否遵循相同的分布。 我们提议基于整体概率度量的双模测试, 用于支持低维的高维样本。 我们用低维的元体来描述拟议测试的特性, 相对于样品数量和具有内在维度的元体结构而言, 美元。 当给出一个地图册时, 我们建议进行两步测试, 以确定一般分布之间的差别, 这些分布达到二类风险的排序为$@%-1/\max ⁇ d2, $。 当没有给出一个阿特拉时, 我们提议 H\ older IPM 测试, 用于以$( beta) $- H\\ “ older 密度” 测试, 也就是用$( betata) equality 网络的近似近似值理论, 我们的测试结果显示, 以 $( talphal) 网络的精确度测试顺序为 H型。

0
下载
关闭预览

相关内容

信息处理和管理(IPM)在计算机与信息科学的交叉点上发布了有关领域,包括但不限于商业、市场营销、广告、社交计算和信息技术等领域的理论、方法或应用的前沿研究。该杂志的目的是通过为及时传播高级和热门问题提供有效的论坛,从而在计算机与信息科学的交叉点上增进研究人员和从业人员的利益。该期刊对原始研究文章、研究调查文章、研究方法文章以及涉及研究关键应用的文章特别感兴趣。官网地址:http://dblp.uni-trier.de/db/journals/ipm/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
MMD Aggregated Two-Sample Test
Arxiv
0+阅读 · 2022年6月22日
Neural Inverse Transform Sampler
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
MMD Aggregated Two-Sample Test
Arxiv
0+阅读 · 2022年6月22日
Neural Inverse Transform Sampler
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
12+阅读 · 2018年1月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员