Automatic medical text simplification can assist providers with patient-friendly communication and make medical texts more accessible, thereby improving health literacy. But curating a quality corpus for this task requires the supervision of medical experts. In this work, we present $\textbf{Med-EASi}$ ($\underline{\textbf{Med}}$ical dataset for $\underline{\textbf{E}}$laborative and $\underline{\textbf{A}}$bstractive $\underline{\textbf{Si}}$mplification), a uniquely crowdsourced and finely annotated dataset for supervised simplification of short medical texts. Its $\textit{expert-layman-AI collaborative}$ annotations facilitate $\textit{controllability}$ over text simplification by marking four kinds of textual transformations: elaboration, replacement, deletion, and insertion. To learn medical text simplification, we fine-tune T5-large with four different styles of input-output combinations, leading to two control-free and two controllable versions of the model. We add two types of $\textit{controllability}$ into text simplification, by using a multi-angle training approach: $\textit{position-aware}$, which uses in-place annotated inputs and outputs, and $\textit{position-agnostic}$, where the model only knows the contents to be edited, but not their positions. Our results show that our fine-grained annotations improve learning compared to the unannotated baseline. Furthermore, $\textit{position-aware}$ control generates better simplification than the $\textit{position-agnostic}$ one. The data and code are available at https://github.com/Chandrayee/CTRL-SIMP.


翻译:自动医疗文本简化可以帮助提供方提供对病人友好的沟通,并使医疗文本更容易获得,从而改善健康知识。但是,要为这项任务制定质量文件,需要医疗专家的监督。在这项工作中,我们为$@textbf{textbf{E ⁇ $ ⁇ $$美元数据集,为$\underline_textbf{E ⁇ $laboariation和$\underline_textb{A ⁇ $bstractive $\underline_comline_tline_textb{Si{Si ⁇ {mplication},这是独一无二的集成和精细的一组数据集。 $truleblebleble{exligendor} 说明$textlifility $rlight_light_lickral_lickral_lickral_lickral_lickral_tal_lickral_tal_tal_tal_tal_tal_tal_slickslick_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_trlick_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_t_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_tal_t_t_tal_t_t_t_tal_tal_t_t_tal_tal_t_t_t_t_t_t_t_t_t_t_t_t_tal_t_t_t_

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Large Language Models
Arxiv
7+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月9日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员