This paper presents a comprehensive survey of ChatGPT and GPT-4, state-of-the-art large language models (LLM) from the GPT series, and their prospective applications across diverse domains. Indeed, key innovations such as large-scale pre-training that captures knowledge across the entire world wide web, instruction fine-tuning and Reinforcement Learning from Human Feedback (RLHF) have played significant roles in enhancing LLMs' adaptability and performance. We performed an in-depth analysis of 194 relevant papers on arXiv, encompassing trend analysis, word cloud representation, and distribution analysis across various application domains. The findings reveal a significant and increasing interest in ChatGPT/GPT-4 research, predominantly centered on direct natural language processing applications, while also demonstrating considerable potential in areas ranging from education and history to mathematics, medicine, and physics. This study endeavors to furnish insights into ChatGPT's capabilities, potential implications, ethical concerns, and offer direction for future advancements in this field.
翻译:本文全面调研了ChatGPT和GPT-4,它们是来自GPT系列的最先进大语言模型(LLM),以及它们在各个领域的前景应用。事实上,大规模的预培训、捕捉整个World Wide Web上知识的指令微调和人类反馈强化学习(RLHF)等关键创新已经在提高LLMs的适应性和性能方面发挥了重要作用。我们对arXiv上的194篇相关论文进行了深入分析,包括趋势分析、词云展示和跨各个应用领域的分布分析。研究结果显示,ChatGPT/GPT-4研究受到了显著且不断增长的关注,主要集中在直接的自然语言处理应用,同时还展示了在教育、历史、数学、医学和物理领域等各个领域具有相当潜力。这项研究力求为ChatGPT的能力、潜在影响、伦理关切提供深入的洞察,为该领域未来的发展提供方向。