深度强化学习(deep reinforcement learning, DRL)方法在经济学中的普及度呈指数级增长。DRL通过从增强学习(RL)到深度学习(DL)的广泛功能,为处理复杂的动态业务环境提供了巨大的机会。DRL的特点是可扩展性,有可能应用于高维问题,并结合经济数据的噪声和非线性模式。本文首先对DL、RL和深度RL方法在经济学中不同应用的简要回顾,提供了对现有技术的深入了解。此外,为了突出DRL的复杂性、鲁棒性、准确性、性能、计算任务、风险约束和盈利能力,还研究了DRL在经济应用中的体系结构。调查结果表明,与传统算法相比,DRL在面临风险参数和不确定性不断增加的现实经济问题时,可以提供更好的性能和更高的精度。