Light field (LF) image super-resolution (SR) aims at reconstructing high-resolution LF images from their low-resolution counterparts. Although CNN-based methods have achieved remarkable performance in LF image SR, these methods cannot fully model the non-local properties of the 4D LF data. In this paper, we propose a simple but effective Transformer-based method for LF image SR. In our method, an angular Transformer is designed to incorporate complementary information among different views, and a spatial Transformer is developed to capture both local and long-range dependencies within each sub-aperture image. With the proposed angular and spatial Transformers, the beneficial information in an LF can be fully exploited and the SR performance is boosted. We validate the effectiveness of our angular and spatial Transformers through extensive ablation studies, and compare our method to recent state-of-the-art methods on five public LF datasets. Our method achieves superior SR performance with a small model size and low computational cost.


翻译:光场图像超分辨率(SR)旨在从低分辨率图像中重建高分辨率LF图像。尽管有线电视新闻网采用的方法在LF图像SR中取得了显著的性能,但这些方法无法完全模拟4DLF数据的非本地特性。在本文中,我们为LF图像SR提出了一个简单而有效的基于变异器的方法。在我们的方法中,一个角变形器旨在纳入不同观点之间的互补信息,并开发一个空间变异器,以捕捉每个子孔图内的地方和长距离依赖性。随着拟议的角变形器和空间变形器的利用,一个LFF的有益信息可以被充分利用,而SR的性能得到提升。我们通过广泛的膨胀研究验证了我们的角变形器和空间变形器的有效性,并将我们的方法与五个公开的LF数据集的最新最新先进方法进行了比较。我们的方法以小的模型大小和低计算成本实现了高级SR性能。

2
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
深度学习的下一步:Transformer和注意力机制
云头条
56+阅读 · 2019年9月14日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Arxiv
3+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
9+阅读 · 2021年2月8日
VIP会员
相关资讯
深度学习的下一步:Transformer和注意力机制
云头条
56+阅读 · 2019年9月14日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Top
微信扫码咨询专知VIP会员