Robots need task planning to sequence and execute actions toward achieving their goals. On the other hand, Behavior Trees provide a mathematical model for specifying plan execution in an intrinsically composable, reactive, and robust way. PDDL (Planning Domain Definition Language) has become the standard description language for most planners. In this paper, we present a novel algorithm to systematically create behavior trees from PDDL plans to execute them. This approach uses the execution graph of the plan to generate a behavior tree. The most remarkable contribution of this approach is the algorithm to build a Behavior Tree that optimizes its execution by paralyzing actions, applicable to any plan, taking into account the actions' causal relationships. We demonstrate the improvement in the execution of plans in mobile robots using the ROS2 Planning System framework.
翻译:机器人需要任务规划来排序和执行实现他们目标的行动。 另一方面, “ 行为树” 提供了一个数学模型, 用来以本质上可以作成、反应性和稳健的方式指定计划执行。 PDDL (规划域定义语言) 已经成为大多数规划者的标准描述语言 。 在本文中, 我们提出了一个新奇的算法, 用于系统地从 PDDL 计划中创建行为树来实施这些树。 这个方法使用计划的执行图来生成一棵行为树。 这个方法最显著的贡献是构建一个行为树, 以瘫痪行动优化其执行, 适用于任何计划, 同时考虑到行动的因果关系 。 我们展示了使用 ROS2 规划系统框架在移动机器人中执行计划方面的改进 。