An $(n,k,\ell)$-vector MDS code is a $\mathbb{F}$-linear subspace of $(\mathbb{F}^\ell)^n$ (for some field $\mathbb{F}$) of dimension $k\ell$, such that any $k$ (vector) symbols of the codeword suffice to determine the remaining $r=n-k$ (vector) symbols. The length $\ell$ of each codeword symbol is called the sub-packetization of the code. Such a code is called minimum storage regenerating (MSR), if any single symbol of a codeword can be recovered by downloading $\ell/r$ field elements (which is known to be the least possible) from each of the other symbols. MSR codes are attractive for use in distributed storage systems, and by now a variety of ingenious constructions of MSR codes are available. However, they all suffer from exponentially large sub-packetization $\ell \gtrsim r^{k/r}$. Our main result is an almost tight lower bound showing that for an MSR code, one must have $\ell \ge \exp(\Omega(k/r))$. This settles a central open question concerning MSR codes that has received much attention. Previously, a lower bound of $\approx \exp(\sqrt{k/r})$, and a tight lower bound for a restricted class of "optimal access" MSR codes, were known.


翻译:$( n, k,\ ell) $( mathbb{ F} $- linear subspace $( mathb{ F\\ ell) $( mathb{ F\ ell) $( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元) 代码的长度( 美元( 美元) 值( 美元) 代码的长度( 美元) 。 这种代码的最小值( 美元( 美元) 值( 美元) 值( 美元) 值( 美元) 代码的大小( 美元) 值( gtrrx 美元), 的代码的大小( 美元) 值( 美元) 底值( ) 底( Or) 值) 问题( ) 。

0
下载
关闭预览

相关内容

挖掘软件存储库(MSR)会议分析软件存储库中可用的丰富数据,以发现有关软件系统和项目的有趣和可操作的信息。官网链接:http://www.msrconf.org/
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
98+阅读 · 2020年12月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月17日
Top
微信扫码咨询专知VIP会员