An $(n,k,\ell)$-vector MDS code is a $\mathbb{F}$-linear subspace of $(\mathbb{F}^\ell)^n$ (for some field $\mathbb{F}$) of dimension $k\ell$, such that any $k$ (vector) symbols of the codeword suffice to determine the remaining $r=n-k$ (vector) symbols. The length $\ell$ of each codeword symbol is called the sub-packetization of the code. Such a code is called minimum storage regenerating (MSR), if any single symbol of a codeword can be recovered by downloading $\ell/r$ field elements (which is known to be the least possible) from each of the other symbols. MSR codes are attractive for use in distributed storage systems, and by now a variety of ingenious constructions of MSR codes are available. However, they all suffer from exponentially large sub-packetization $\ell \gtrsim r^{k/r}$. Our main result is an almost tight lower bound showing that for an MSR code, one must have $\ell \ge \exp(\Omega(k/r))$. This settles a central open question concerning MSR codes that has received much attention. Previously, a lower bound of $\approx \exp(\sqrt{k/r})$, and a tight lower bound for a restricted class of "optimal access" MSR codes, were known.
翻译:$( n, k,\ ell) $( mathbb{ F} $- linear subspace $( mathb{ F\\ ell) $( mathb{ F\ ell) $( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元) 元( 美元) 元( 美元) 元( 美元) 元( 美元) 元) 代码的长度( 美元( 美元) 值( 美元) 代码的长度( 美元) 。 这种代码的最小值( 美元( 美元) 值( 美元) 值( 美元) 值( 美元) 代码的大小( 美元) 值( gtrrx 美元), 的代码的大小( 美元) 值( 美元) 底值( ) 底( Or) 值) 问题( ) 。