We present a novel approach for computing a variant of eigenvector centrality for multilayer networks with inter-layer constraints on node importance. Specifically, we consider a multilayer network defined by multiple edge-weighted, potentially directed, graphs over the same set of nodes with each graph representing one layer of the network and no inter-layer edges. As in the standard eigenvector centrality construction, the importance of each node in a given layer is based on the weighted sum of the importance of adjacent nodes in that same layer. Unlike standard eigenvector centrality, we assume that the adjacency relationship and the importance of adjacent nodes may be based on distinct layers. Importantly, this type of centrality constraint is only partially supported by existing frameworks for multilayer eigenvector centrality that use edges between nodes in different layers to capture inter-layer dependencies. For our model, constrained, layer-specific eigenvector centrality values are defined by a system of independent eigenvalue problems and dependent pseudo-eigenvalue problems, whose solution can be efficiently realized using an interleaved power iteration algorithm.
翻译:我们提出了一个新颖的方法,用于计算具有节点重要性的跨层限制的多层网络的顶点核心变量。 具体地说, 我们考虑一个多层网络, 由多边缘加权、 潜在定向、 同一节点的图解来定义, 每个图解代表着网络的一层, 没有跨层边缘。 正如标准的顶点中心构造一样, 特定层中每个节点的重要性是基于同一层相邻节点重要性的加权和加权总和。 与标准的顶点中心不同, 我们假设相邻关系和相邻节点的重要性可能基于不同的层。 重要的是, 这种中间点制约只能得到多层顶点中心点的现有框架的部分支持, 该框架使用不同层节点之间的边缘来捕捉跨层的依赖性。 对于我们的模型, 受约束的、 地层特定顶点的顶点核心值, 是由独立的顶点问题和依附的伪值问题系统来定义的, 其解决方案可以通过离层间电路转换算法有效实现。