Adaptively Informed Trees (AIT*) develops the problem-specific heuristic under the current topological abstraction of the state space with a lazy-reverse tree that is constructed without collision checking. AIT* can avoid unnecessary searching with the heuristic, which significantly improves the algorithm performance, especially when collision checking is expensive. However, the heuristic estimation in AIT* consumes lots of computation resources, and its asymmetric bidirectional searching strategy cannot fully exploit the potential of the bidirectional method. In this article, we extend AIT* from the asymmetric bidirectional search to the symmetrical bidirectional search, namely BiAIT*. Both the heuristic and space searching in BiAIT* are calculated bidirectionally. The path planner can find the initial solution faster with our proposed method. In addition, when a collision happens, BiAIT* can update the heuristic with less computation. Simulations are carried out to evaluate the performance of the proposed algorithm, and the results show that our algorithm can find the solution faster than the state of the arts. We also analyze the reason for different performances between BiAIT* and AIT*. Furthermore, we discuss two simple but effective modifications to fully exploit the potential of the adaptively heuristic method.
翻译:适应性知情树(AIT*)在目前国家空间的表面抽象条件下,以不进行碰撞检查而构造的懒惰反向树,发展了问题特有的螺旋性。AIT* 避免了不必要地与超光速搜索,这大大改善了算法的性能,特别是在碰撞检查费用昂贵的情况下。然而,AIT* 中的超光速估计消耗了大量计算资源,其不对称的双向双向搜索战略无法充分利用双向方法的潜力。在文章中,我们将非对称双向搜索* 扩展为对称双向双向搜索,即BiaIT* 。BiaIT* 中的超光速和空间搜索都是双向计算。路径规划者可以用我们提议的方法更快地找到初始解决方案。此外,在碰撞发生时,BiaIT* 能够以较少的计算方式更新超常的双向搜索战略。模拟了拟议算法的性能,结果显示我们的算法可以比艺术状态更快地找到解决方案。我们还分析了对双向搜索* 双向搜索的双向和双向搜索过程进行双向计算。我们还分析了对调应用了两种方法之间的简单调整理由。