Given a graph $G$ with $n$ vertices and maximum degree $\Delta$, it is known that $G$ admits a vertex coloring with $\Delta + 1$ colors such that no edge of $G$ is monochromatic. This can be seen constructively by a simple greedy algorithm, which runs in time $O(n\Delta)$. Very recently, a sequence of results (e.g., [Assadi et. al. SODA'19, Bera et. al. ICALP'20, Alon Assadi Approx/Random'20]) show randomized algorithms for $(\epsilon + 1)\Delta$-coloring in the query model making $\tilde{O}(n\sqrt{n})$ queries, improving over the greedy strategy on dense graphs. In addition, a lower bound of $\Omega(n\sqrt n)$ for any $O(\Delta)$-coloring is established on general graphs. In this work, we give a simple algorithm for $(1 + \epsilon)\Delta$-coloring. This algorithm makes $O(\epsilon^{-1/2}n\sqrt{n})$ queries, which matches the best existing algorithms as well as the classical lower bound for sufficiently large $\epsilon$. Additionally, it can be readily adapted to a quantum query algorithm making $\tilde{O}(\epsilon^{-1}n^{4/3})$ queries, bypassing the classical lower bound. Complementary to these algorithmic results, we show a quantum lower bound of $\Omega(n)$ for $O(\Delta)$-coloring.


翻译:以GG$为单位, 以美元为单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位。 最近, 一系列的结果( 如, 阿萨迪 等方, SODA' 19, Bera 等方, 以美元為单位, 以美元為单位, 以美元為单位, 阿萨迪 Appx/ Random'20, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位, 以美元為单位。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月7日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
相关论文
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月7日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Top
微信扫码咨询专知VIP会员