Designing infinite impulse response filters to match an arbitrary magnitude response requires specialized techniques. Methods like modified Yule-Walker are relatively efficient, but may not be sufficiently accurate in matching high order responses. On the other hand, iterative optimization techniques often enable superior performance, but come at the cost of longer run-times and are sensitive to initial conditions, requiring manual tuning. In this work, we address some of these limitations by learning a direct mapping from the target magnitude response to the filter coefficient space with a neural network trained on millions of random filters. We demonstrate our approach enables both fast and accurate estimation of filter coefficients given a desired response. We investigate training with different families of random filters, and find training with a variety of filter families enables better generalization when estimating real-world filters, using head-related transfer functions and guitar cabinets as case studies. We compare our method against existing methods including modified Yule-Walker and gradient descent and show IIRNet is, on average, both faster and more accurate.


翻译:设计无限的脉冲反应过滤器,以适应任意程度的反应,需要专门技术。修改的尤尔-瓦尔克等方法相对有效,但在匹配高顺序反应方面可能不够准确。另一方面,迭代优化技术往往能够提高性能,但以较长的运行时间为代价,并且对初始条件敏感,需要手工调整。在这项工作中,我们通过从目标规模对过滤系数空间的直接绘图,通过一个有数百万随机过滤器的神经网络培训来应对其中一些限制。我们展示了我们的方法既能快速准确地估计过滤系数,又能快速准确地估计所需的反应。我们调查与随机过滤器不同家庭的培训,并发现与各种过滤器家庭的培训有助于在估计现实世界过滤器时更好地概括化,使用与头有关的转移功能和吉他壁作为案例研究。我们比较了我们的方法与包括修改的尤尔-瓦尔克和梯度根系在内的现有方法,并显示IIRNet的平均速度和准确度。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员