Interpretability and robustness are imperative for integrating Machine Learning methods for accelerated Magnetic Resonance Imaging (MRI) reconstruction in clinical applications. Doing so would allow fast high-quality imaging of anatomy and pathology. Data Consistency (DC) is crucial for generalization in multi-modal data and robustness in detecting pathology. This work proposes the Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization, implicitly by gradient descent and explicitly by a designed term. We perform extensive comparison of the CIRIM to other unrolled optimization methods, being the End-to-End Variational Network (E2EVN) and the RIM, and to the UNet and Compressed Sensing (CS). Evaluation is done in two stages. Firstly, learning on multiple trained MRI modalities is assessed, i.e., brain data with ${T_1}$-weighting and FLAIR contrast, and ${T_2}$-weighted knee data. Secondly, robustness is tested on reconstructing pathology through white matter lesions in 3D FLAIR MRI data of relapsing remitting Multiple Sclerosis (MS) patients. Results show that the CIRIM performs best when implicitly enforcing DC, while the E2EVN requires explicitly formulated DC. The CIRIM shows the highest lesion contrast resolution in reconstructing the clinical MS data. Performance improves by approximately 11% compared to CS, while the reconstruction time is twenty times reduced.


翻译:为了在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法,解释性和稳健性是整合临床应用中加速磁共振成像(MRI)的关键,这样可以快速高品质的解剖和病理成像。数据一致性(DC)对于多模式数据的一般化和检测病理学的稳健性至关重要。这项工作建议独立经常性推断机(CIRIM)的级联通过无滚动优化、以渐变下降为隐含和明确设计术语来评估DC。我们将CIRIM与其他未滚动优化方法进行广泛比较,成为最终至演化网络(E2EEVN)和RIM的快速高品质成像。评估分为两个阶段进行。首先,对经过多种培训的 MRI 模式的学习进行评估,即以 $(T_1) 加权和 FLAIR 对比进行脑数据评估,以及用 $(T_2) 美元加权膝盖数据进行广泛比较。第二,在进行病理学中重建病理学的精度(CIM) 和精度分析时,CIMSBRIL 需要进行最精度 进行最精确的再分析。

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年8月27日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
已删除
将门创投
5+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月28日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
已删除
将门创投
5+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员