Legal documents are unstructured, use legal jargon, and have considerable length, making them difficult to process automatically via conventional text processing techniques. A legal document processing system would benefit substantially if the documents could be segmented into coherent information units. This paper proposes a new corpus of legal documents annotated (with the help of legal experts) with a set of 13 semantically coherent units labels (referred to as Rhetorical Roles), e.g., facts, arguments, statute, issue, precedent, ruling, and ratio. We perform a thorough analysis of the corpus and the annotations. For automatically segmenting the legal documents, we experiment with the task of rhetorical role prediction: given a document, predict the text segments corresponding to various roles. Using the created corpus, we experiment extensively with various deep learning-based baseline models for the task. Further, we develop a multitask learning (MTL) based deep model with document rhetorical role label shift as an auxiliary task for segmenting a legal document. The proposed model shows superior performance over the existing models. We also experiment with model performance in the case of domain transfer and model distillation techniques to see the model performance in limited data conditions.
翻译:法律文件结构混乱,使用法律术语,篇幅长,难以通过常规文本处理技术自动处理。如果法律文件处理系统能够将文件分成一致的信息单位,法律文件处理系统将大有裨益。本文件提议了一套新的法律文件,附加说明(在法律专家的帮助下),有一套13个内容一致的单元标签(称为 " 礼仪作用 " ),例如事实、论点、论据、法规、问题、先例、判例、裁决和比率。我们对文件和说明进行透彻分析。对于法律文件的自动分解,我们试验了文字作用预测任务:给文件,预测与各种作用对应的文字部分。我们利用所创建的文献,广泛试验各种深层次的学习基线模型,用于这项任务。此外,我们开发了一个基于文件文字作用标签转换的深层次模型,作为分解法律文件的辅助任务。拟议的模型显示优于现有模型的绩效。我们还在域域转移和模型蒸馏技术方面试验了示范性业绩,以便在有限的条件下看到模型性能。