Anomaly detection has attracted considerable search attention. However, existing anomaly detection databases encounter two major problems. Firstly, they are limited in scale. Secondly, training sets contain only video-level labels indicating the existence of an abnormal event during the full video while lacking annotations of precise time durations. To tackle these problems, we contribute a new Large-scale Anomaly Detection (LAD) database as the benchmark for anomaly detection in video sequences, which is featured in two aspects. 1) It contains 2000 video sequences including normal and abnormal video clips with 14 anomaly categories including crash, fire, violence, etc. with large scene varieties, making it the largest anomaly analysis database to date. 2) It provides the annotation data, including video-level labels (abnormal/normal video, anomaly type) and frame-level labels (abnormal/normal video frame) to facilitate anomaly detection. Leveraging the above benefits from the LAD database, we further formulate anomaly detection as a fully-supervised learning problem and propose a multi-task deep neural network to solve it. We first obtain the local spatiotemporal contextual feature by using an Inflated 3D convolutional (I3D) network. Then we construct a recurrent convolutional neural network fed the local spatiotemporal contextual feature to extract the spatiotemporal contextual feature. With the global spatiotemporal contextual feature, the anomaly type and score can be computed simultaneously by a multi-task neural network. Experimental results show that the proposed method outperforms the state-of-the-art anomaly detection methods on our database and other public databases of anomaly detection. Codes are available at https://github.com/wanboyang/anomaly_detection_LAD2000.
翻译:然而,现有的异常检测数据库引起了相当的搜索关注。然而,现有的异常检测数据库遇到了两大问题。 首先,它们的规模有限。 其次, 培训数据集仅包含视频级别标签, 显示在完整视频中存在异常事件, 同时缺乏准确的时间期限说明。 为了解决这些问题, 我们贡献了一个新的大规模异常检测(LAD)数据库, 作为视频序列中异常检测的基准, 它有两个方面。 1 它包含2000个视频序列, 包括正常和不正常的视频剪辑, 14个异常类别, 包括崩溃、 火灾、 暴力等, 以及大场景品种, 使得它成为迄今为止最大的异常分析数据库。 2 它提供了批注数据, 包括视频级别标签( 异常/正常视频、 异常类型) 和框架级别标签( 异常/ 正常视频框架), 以便利异常检测。 利用以上视频序列数据库的好处, 我们进一步将异常检测编成一个完全监控的学习问题, 并提议一个多塔克深度的多层神经网络来解决这个问题。 我们首先通过一个局远调的内局背景背景背景分析特征, 3号数据库, 来构建一个直径直径的直径网络, 直径网络的直径分析, 显示另一个的直径对地路图, 。