Kaplan and Montague have showed that certain intuitive axioms for a first-order theory of knowledge, formalized as a predicate, are jointly inconsistent. Their arguments rely on self-referential formulas. I offer a consistent first-order theory solving these knower paradoxes, with the following main features: - It solves the knower paradoxes by providing a faithful formalization of the principle of veracity (that knowledge requires truth), using both a knowledge and a truth predicate. - It is genuinely untyped. I.e. it is untyped not only in the sense that it uses a single knowledge predicate applying to all sentences in the language (including sentences in which this predicate occurs), but in the sense that its axioms quantify over all sentences in the language, thus supporting comprehensive reasoning with untyped knowledge ascriptions. - Common knowledge predicates can be defined in the system using self-reference. This fact, together with the genuinely untyped nature of the system and a technique based on L\"ob's theorem, enables it to support comprehensive reasoning with untyped common knowledge ascriptions (without having any axiom directly addressing common knowledge).


翻译:一个完全无类型的解决知者悖论的方案 翻译后的摘要: Kaplan和Montague已经展示了一个一阶知识理论的某些直观公理是相互不一致的。其论据依赖于自指公式。作者提供了一个一致的一阶理论来解决这些知者悖论,其主要特点如下:- 它通过提供一个忠实的真实性原则的形式化证明来解决知者悖论(即,知识需要真实性),使用了知识和真理谓词。- 它是完全无类型的,不仅在使用单个适用于语言中所有句子(包括这个谓词出现的句子)的知识谓词的意义上,而且在其公理中量化了语言中的所有句子,从而支持涵盖了无类型知识归属的全面推理。- 通用的知识谓词可以使用自引用在系统中进行定义。这一事实,加上系统的完全无类型性和一个基于Löb定理的技巧,使得它能够支持对无类型共知归属的全面推理(而不必有任何明确涉及共知的公理)。

0
下载
关闭预览

相关内容

【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
0+阅读 · 2023年6月2日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
VIP会员
相关VIP内容
【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员