Knowledge graphs (KGs) consisting of a large number of triples have become widespread recently, and many knowledge graph embedding (KGE) methods are proposed to embed entities and relations of a KG into continuous vector spaces. Such embedding methods simplify the operations of conducting various in-KG tasks (e.g., link prediction) and out-of-KG tasks (e.g., question answering). They can be viewed as general solutions for representing KGs. However, existing KGE methods are not applicable to inductive settings, where a model trained on source KGs will be tested on target KGs with entities unseen during model training. Existing works focusing on KGs in inductive settings can only solve the inductive relation prediction task. They can not handle other out-of-KG tasks as general as KGE methods since they don't produce embeddings for entities. In this paper, to achieve inductive knowledge graph embedding, we propose a model MorsE, which does not learn embeddings for entities but learns transferable meta-knowledge that can be used to produce entity embeddings. Such meta-knowledge is modeled by entity-independent modules and learned by meta-learning. Experimental results show that our model significantly outperforms corresponding baselines for in-KG and out-of-KG tasks in inductive settings.
翻译:由大量三重任务组成的知识图形(KGs)最近变得十分广泛,许多知识图形嵌入(KGE)方法建议将KG的实体和关系嵌入连续矢量空间。这种嵌入方法简化了执行各种KG任务(例如链接预测)和KG外任务(例如问答)的操作。它们可以被视为代表KGs的一般解决方案。然而,现有的KGE方法不适用于感化环境,在这种环境中,将用在目标KGs上培训过的KGs模型与在模型培训期间看不到的实体进行测试。在感化环境中注重KGs的现有工作只能解决感化关系预测任务。由于KGE工作不为实体提供嵌入式知识图形嵌入,因此无法处理其他KG外任务(例如链接预测)一般的KG任务。在本文中,为了实现感化知识图形嵌入,我们建议一个模型MORE,它不会为实体学习嵌入嵌入,而是学习可转让的元知识知识知识知识知识,但在模型中可以用来产生实体嵌入G型嵌入的模型,在模型中,从而在模型模型中将K型模型显示,通过模型显示,在模型中学习,在模型中,在模型中,在模型中,通过模型中,通过模型中,可以显示,在模型中,在模型中,在模型中,在模型中,在模型中,在模型中,在模型中,可以显示。这种模型中,通过模型显示,通过模型显示,通过模型显示,在模型显示,在模型显示,在模型中,K。通过模型显示,在模型显示,在模型中,在模型显示,在模型中,在模型中,在模型中,在模型中,在模型中,在模型中,可以显示,在模型中,在模型中,在模型中,在模型中,在模型中,在模型中,可以显示,在模型中,在模型中,在模型中,可以显示。。。。