The management of networks is automated by closed loops. Concurrent closed loops aiming for individual optimization cause conflicts which, left unresolved, leads to significant degradation in performance indicators, resulting in sub-optimal network performance. Centralized optimization avoids conflicts, but impractical in large-scale networks for time-critical applications. Distributed, pervasive intelligence is therefore envisaged in the evolution to B5G networks. In this letter, we propose a Q-Learning-based distributed architecture (QLC), addressing the conflict issue by encouraging cooperation among intelligent agents. We design a realistic B5G network slice auto-scaling model and validate the performance of QLC via simulations, justifying further research in this direction.
翻译:以个人优化为目的的同步封闭循环导致冲突,这些冲突尚未解决,导致业绩指标严重退化,导致网络性能低于最佳水平; 集中优化避免冲突,但在大型网络中避免冲突,但用于时间紧迫应用的大规模网络不切实际; 因此,在向B5G网络的演变过程中设想了分布式、无处不在的情报; 在此信中,我们提议一个基于学习的分布式架构(QLC),通过鼓励智能剂之间的合作来解决冲突问题; 我们设计一个现实的B5G网络切片自动标价模型,并通过模拟验证QLC的绩效,以此为进一步的研究提供依据。