Tensor robust principal component analysis (TRPCA) is a promising way for low-rank tensor recovery, which minimizes the convex surrogate of tensor rank by shrinking each tensor singular values equally. However, for real-world visual data, large singular values represent more signifiant information than small singular values. In this paper, we propose a nonconvex TRPCA (N-TRPCA) model based on the tensor adjustable logarithmic norm. Unlike TRPCA, our N-TRPCA can adaptively shrink small singular values more and shrink large singular values less. In addition, TRPCA assumes that the whole data tensor is of low rank. This assumption is hardly satisfied in practice for natural visual data, restricting the capability of TRPCA to recover the edges and texture details from noisy images and videos. To this end, we integrate nonlocal self-similarity into N-TRPCA, and further develop a nonconvex and nonlocal TRPCA (NN-TRPCA) model. Specifically, similar nonlocal patches are grouped as a tensor and then each group tensor is recovered by our N-TRPCA. Since the patches in one group are highly correlated, all group tensors have strong low-rank property, leading to an improvement of recovery performance. Experimental results demonstrate that the proposed NN-TRPCA outperforms some existing TRPCA methods in visual data recovery. The demo code is available at https://github.com/qguo2010/NN-TRPCA.
翻译:光学强强本部分分析(TRPCA)是低调高压回收的一个很有希望的方法,它通过同样缩小每个高压单值来将高压级的螺旋替代值最小化。 然而,对于真实世界的视觉数据来说,大单值代表了比小单值更多的信号性信息。 在本文中,我们提议了一个基于可调度对数规范的非Convex TRPCA(N-TRPCA)模型。与TRPCA不同,我们的N-TRPCA(NRPCA)模型可以适应性地缩小小单值小值,减少大单值。此外,TRCA假设整个数据的螺旋替代值是低级的。对于自然视觉数据来说,这一假设几乎无法满足,限制了TRCA从噪音图像和视频中恢复边缘和纹理细节的能力。为此,我们将非本地的自我相似性差纳入NTRPCA(NN-TRPCA)模型。具体地说,类似的非局部部分是TRA(TORTRA)的直径解后,每个组的恢复结果都是高压级的。