Conditional Monte Carlo or pre-integration is a useful tool for reducing variance and improving regularity of integrands when applying Monte Carlo and quasi-Monte Carlo (QMC) methods. To choose the variable to pre-integrate with, one need to consider both the variable importance and the tractability of the conditional expectation. For integrals over a Gaussian distribution, one can pre-integrate over any linear combination of variables. Liu and Owen (2022) propose to choose the linear combination based on an active subspace decomposition of the integrand. However, pre-integrating over such selected direction might be intractable. In this work, we address this issue by finding the active subspaces subject to the constraints such that pre-integration can be easily carried out. The proposed method is applied to some examples in derivative pricing under stochastic volatility models and is shown to outperform previous methods.


翻译:有条件的蒙特卡洛(Monte Carlo)或预合并是减少差异和改善在应用蒙特卡洛(Monte Carlo)和准蒙特卡洛(QMC)方法时原成群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群的有用工具。 要选择要将变量群集起来的变量群集群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群集群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群集群群群群集群集群群集群群群群群群群群群群群群群集群群群群群群群群群群集群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员