In this study, we investigate how supporting serendipitous discovery and analysis of short free-form texts, such as product reviews can encourage readers to explore texts more comprehensively prior to decision-making. We propose two interventions -- Exploration Metrics that help readers understand and track their exploration patterns through visual indicators and a Bias Mitigation Model that maximizes knowledge discovery by suggesting readers sentiment and semantically diverse reviews. We designed, developed, and evaluated a text analytics system called Serendyze, where we integrated these interventions. We asked 100 crowd workers to use Serendyze to make purchase decisions based on product reviews. Our evaluation suggests that exploration metrics enable readers to efficiently cover more reviews in a balanced way, and suggestions from the bias mitigation model influence readers to make confident data-driven decisions. We discuss the role of user agency and trust in text-level analysis systems and their applicability in domains beyond review exploration.
翻译:在这项研究中,我们调查支持偶然发现和分析诸如产品审查等短期自由形式文本如何能够鼓励读者在决策前更全面地探讨文本。我们建议采取两种干预措施:通过视觉指标帮助读者理解和跟踪其探索模式的探索模型和通过建议读者情绪和语义多样性审查来最大限度地扩大知识发现模型。我们设计、开发和评价了一个名为Serendyze的文本分析系统,我们在那里综合了这些干预措施。我们要求100名人群工人利用Serendyze来根据产品审查作出采购决定。我们的评估建议,探索指标使读者能够以平衡的方式有效覆盖更多的审查,以及偏见缓解模型的建议会影响读者做出有信心的数据驱动决定。我们讨论了用户机构的作用,并信任文本级分析系统及其在超出审查探索范围的领域的适用性。