This paper presents a novel context-aware image denoising algorithm that combines an adaptive image smoothing technique and color reduction techniques to remove perturbation from adversarial images. Adaptive image smoothing is achieved using auto-threshold canny edge detection to produce an accurate edge map used to produce a blurred image that preserves more edge features. The proposed algorithm then uses color reduction techniques to reconstruct the image using only a few representative colors. Through this technique, the algorithm can reduce the effects of adversarial perturbations on images. We also discuss experimental data on classification accuracy. Our results showed that the proposed approach reduces adversarial perturbation in adversarial attacks and increases the robustness of the deep convolutional neural network models.
翻译:本文介绍了一种新的环境觉悟图像脱色算法,该算法结合了适应性图像平滑技术和减少颜色技术,以去除对抗性图像的扰动。适应性图像平滑是使用自动临界的罐子边缘探测法实现的,以产生精确的边缘地图,用于产生模糊的图像,保留更多的边缘特征。拟议的算法然后使用减少颜色技术,仅使用少数具有代表性的颜色来重建图像。通过这种方法,算法可以减少对抗性扰动对图像的影响。我们还讨论了关于分类准确性的实验数据。我们的结果显示,拟议的方法减少了对抗性攻击中的对抗性侵扰,提高了深共生神经网络模型的稳健性。