With the rapid development of Green Communication Network, the types and quantity of network traffic data are accordingly increasing. Network traffic classification become a non-trivial research task in the area of network management and security, which not only help to improve the fine-grained network resource allocation, but also enable policy-driven network management. Meanwhile, the combination of SDN and Edge Computing can leverage both SDN at its global visiability of network-wide and Edge Computing at its low latency and good privacy-preserving. However, capturing large labeled datasets is a cumbersome and time-consuming manual labor. Semi-Supervised learning is an appropriate technique to overcome this problem. With that in mind, we proposed a Generative Adversarial Network (GAN)-based Semi-Supervised Learning Encrypted Traffic Classification method called \emph{ByteSGAN} embedded in SDN Edge Gateway to achieve the goal of traffic classification in a fine-grained manner to further improve network resource utilization. ByteSGAN can only use a small number of labeled traffic samples and a large number of unlabeled samples to achieve a good performance of traffic classification by modifying the structure and loss function of the regular GAN discriminator network in a semi-supervised learning way. Based on public dataset 'ISCX2012 VPN-nonVPN', two experimental results show that the ByteSGAN can efficiently improve the performance of traffic classifier and outperform the other supervised learning method like CNN.


翻译:随着绿色通信网络的迅速发展,网络交通数据的类型和数量也随之增加。网络交通分类在网络管理和安全领域成为非三重研究任务,这不仅有助于改进精细的网络资源分配,而且有助于政策驱动的网络管理。与此同时,SDN和Edge计算结合SDN和Edge计算公司可以在全球范围利用SDN的网络覆盖度,而Edge计算公司则在低渗透度和良好的隐私保护方面利用网络流量数据。但是,获取大量贴标签的数据集是一项繁琐和耗时的手工劳动。半超版学习是解决这一问题的适当方法。考虑到这一点,我们提议采用基于精细的网络资源配置,同时采用基于精密网络配置的半超高级网络(GAN)和半高级网络管理,称为emph{ByteSGAN],在SD网网中采用精密的交通分类,以进一步提高网络资源的利用率。ByteSGAN只能使用少量标签的交通样本和大量未贴标签的网络的不贴标签的系统,从而在GNSS的常规数据库中,通过定期学习G-SAS格式,在G-SB数据库中,通过其他的分类,显示正常的考试数据库的学习结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员