Remote sensing image registration is valuable for image-based navigation system despite posing many challenges. As the search space of registration is usually non-convex, the optimization algorithm, which aims to search the best transformation parameters, is a challenging step. Conventional optimization algorithms can hardly reconcile the contradiction of simultaneous rapid convergence and the global optimization. In this paper, a novel learning-based optimization algorithm named Image Registration Optimizer Network (IRON) is proposed, which can predict the global optimum after single iteration. The IRON is trained by a 3D tensor (9x9x9), which consists of similar metric values. The elements of the 3D tensor correspond to the 9x9x9 neighbors of the initial parameters in the search space. Then, the tensor's label is a vector that points to the global optimal parameters from the initial parameters. Because of the special architecture, the IRON could predict the global optimum directly for any initialization. The experimental results demonstrate that the proposed algorithm performs better than other classical optimization algorithms as it has higher accuracy, lower root of mean square error (RMSE), and more efficiency. Our IRON codes are available for further study.https://www.github.com/jaxwangkd04/IRON


翻译:尽管存在许多挑战,遥感图像登记对于基于图像的导航系统是有价值的。由于注册的搜索空间通常是非康维克斯,旨在搜索最佳转换参数的优化算法是一个具有挑战性的步骤。常规优化算法无法调和同时快速趋同和全球优化的矛盾。在本文中,提出了名为图像登记优化器网络(IRON)的新颖的基于学习的优化算法,它可以预测单次循环后的全球最佳状态。IRON由由3D Exor (9x9x9) 培训,它由类似的指标值组成。3D Exor 的元素相当于搜索空间初始参数的9x9的邻居。然后,Sharmor的标签是一个向量,它从初始参数中指向全球最佳参数。由于特殊的架构,IRON可以直接预测任何初始化的全球最佳状态。实验结果表明,拟议的算法比其他经典优化算法表现得更好,因为它具有更高的精度、较低的中度正方差根值(RMSE)和更高的效率。我们的IRON代码可以用于进一步研究。httpsmarg/www.org/www.giwam。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
综述 | 图像配准 Image registration
计算机视觉life
18+阅读 · 2019年9月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年1月8日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
7+阅读 · 2020年3月1日
VIP会员
相关资讯
综述 | 图像配准 Image registration
计算机视觉life
18+阅读 · 2019年9月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员