Remote sensing image registration is valuable for image-based navigation system despite posing many challenges. As the search space of registration is usually non-convex, the optimization algorithm, which aims to search the best transformation parameters, is a challenging step. Conventional optimization algorithms can hardly reconcile the contradiction of simultaneous rapid convergence and the global optimization. In this paper, a novel learning-based optimization algorithm named Image Registration Optimizer Network (IRON) is proposed, which can predict the global optimum after single iteration. The IRON is trained by a 3D tensor (9x9x9), which consists of similar metric values. The elements of the 3D tensor correspond to the 9x9x9 neighbors of the initial parameters in the search space. Then, the tensor's label is a vector that points to the global optimal parameters from the initial parameters. Because of the special architecture, the IRON could predict the global optimum directly for any initialization. The experimental results demonstrate that the proposed algorithm performs better than other classical optimization algorithms as it has higher accuracy, lower root of mean square error (RMSE), and more efficiency. Our IRON codes are available for further study.https://www.github.com/jaxwangkd04/IRON
翻译:尽管存在许多挑战,遥感图像登记对于基于图像的导航系统是有价值的。由于注册的搜索空间通常是非康维克斯,旨在搜索最佳转换参数的优化算法是一个具有挑战性的步骤。常规优化算法无法调和同时快速趋同和全球优化的矛盾。在本文中,提出了名为图像登记优化器网络(IRON)的新颖的基于学习的优化算法,它可以预测单次循环后的全球最佳状态。IRON由由3D Exor (9x9x9) 培训,它由类似的指标值组成。3D Exor 的元素相当于搜索空间初始参数的9x9的邻居。然后,Sharmor的标签是一个向量,它从初始参数中指向全球最佳参数。由于特殊的架构,IRON可以直接预测任何初始化的全球最佳状态。实验结果表明,拟议的算法比其他经典优化算法表现得更好,因为它具有更高的精度、较低的中度正方差根值(RMSE)和更高的效率。我们的IRON代码可以用于进一步研究。httpsmarg/www.org/www.giwam。