One can often encounter claims that classical (Kolmogorovian) probability theory cannot handle, or even is contradicted by, certain empirical findings or substantive theories. This note joins several previous attempts to explain that these claims are unjustified, illustrating this on the issues of (non)existence of joint distributions, probabilities of ordered events, and additivity of probabilities. The specific focus of this note is on showing that the mistakes underlying these claims can be precluded by labeling all random variables involved contextually. Moreover, contextual labeling also enables a valuable additional way of analyzing probabilistic aspects of empirical situations: determining whether the random variables involved form a contextual system, in the sense generalized from quantum mechanics. Thus, to the extent the Wang-Busemeyer QQ equality for the question order effect holds, the system describing them is noncontextual. The double-slit experiment and its behavioral analogues also turn out to form a noncontextual system, having the same probabilistic format (cyclic system of rank 4) as the one describing spins of two entangled electrons.


翻译:人们常常会遇到古典(Kolmogorovian)概率理论无法处理、甚至与某些经验性结论或实质性理论相矛盾的说法。本说明与以前几次试图解释这些主张是没有道理的,在(没有)存在联合分布、有秩序事件概率和可能性的相加等问题上说明了这一点。本说明的具体重点是表明,这些主张背后的错误可以通过贴上与背景有关的所有随机变量标签来排除。此外,背景标签还使得分析经验性情况的概率方面有了宝贵的额外方法:确定随机变量是否构成一种背景系统,从量子力学的意义上来说是普遍性的。因此,在Wang-Busemeyer对问题订单效果的平等维持的情况下,描述它们的系统是非文字性的。双面实验及其行为模拟也形成了一种非文字性的系统,其格式(第4级周期系统)与描述两个被缠绕的电的螺旋。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年12月2日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员