We consider a set-valued online prediction problem in the context of network caching. Assume that users are connected to a number of caches via a bipartite network. At any time slot, each user requests some file chosen from a large catalog. A user's request is met if the requested file is cached in at least one of the caches connected to the user. The objective is to predict and optimally store the files on the caches to maximize the total number of cache hits. We propose $\texttt{LeadCache}$ - an online caching policy based on the Follow-the-Perturbed-Leader paradigm. We show that the policy is regret-optimal up to a factor of $\tilde{O}(n^{3/8}),$ where $n$ is the number of users. We implement the policy by designing a new linear-time Pipage rounding algorithm. With an additional Strong-Law-type assumption, we show that the total number of file fetches under $\texttt{LeadCache}$ remains almost surely finite. Additionally, we derive a tight regret lower bound using results from graph coloring. Our conclusion is that the proposed learning-based caching policy decisively outperforms the classical policies both theoretically and empirically.


翻译:我们考虑网络缓存背景下的设定价值在线预测问题。 假设用户通过双边网络连接到一些缓存。 在任何时间档中, 每个用户都要求从大型目录中选择一些文件。 如果请求的文件至少以与用户连接的缓存中的一个缓存中存储, 用户的要求得到满足。 我们的目标是在缓存中预测并优化存储文件, 以最大限度地增加缓存点击的总数。 我们提议 $\ textt{LeadCache}$ - 一种基于“ 跟踪” 的在线缓存政策。 我们显示, 该政策是遗憾- 最佳到 $\ tillde{O} (n ⁇ 3/8}) 的因子。 如果请求的文件至少以与用户数量相联的缓存中一个缓存文件。 我们通过设计新的线性时间 Pippage 圆算算法来实施该政策。 加上一个强有力的法律类型假设, 我们显示基于 $\ textt{LeadCachet} 模式的文档获取的总量仍然几乎是有限的。 此外, 我们用正式的列表式政策来得出一种严格、 直观的列表。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
76+阅读 · 2021年3月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
用霍夫变换&SCNN码一个车道追踪器
全球人工智能
4+阅读 · 2019年2月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月29日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
76+阅读 · 2021年3月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
用霍夫变换&SCNN码一个车道追踪器
全球人工智能
4+阅读 · 2019年2月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员