We consider a set-valued online prediction problem in the context of network caching. Assume that users are connected to a number of caches via a bipartite network. At any time slot, each user requests some file chosen from a large catalog. A user's request is met if the requested file is cached in at least one of the caches connected to the user. The objective is to predict and optimally store the files on the caches to maximize the total number of cache hits. We propose $\texttt{LeadCache}$ - an online caching policy based on the Follow-the-Perturbed-Leader paradigm. We show that the policy is regret-optimal up to a factor of $\tilde{O}(n^{3/8}),$ where $n$ is the number of users. We implement the policy by designing a new linear-time Pipage rounding algorithm. With an additional Strong-Law-type assumption, we show that the total number of file fetches under $\texttt{LeadCache}$ remains almost surely finite. Additionally, we derive a tight regret lower bound using results from graph coloring. Our conclusion is that the proposed learning-based caching policy decisively outperforms the classical policies both theoretically and empirically.
翻译:我们考虑网络缓存背景下的设定价值在线预测问题。 假设用户通过双边网络连接到一些缓存。 在任何时间档中, 每个用户都要求从大型目录中选择一些文件。 如果请求的文件至少以与用户连接的缓存中的一个缓存中存储, 用户的要求得到满足。 我们的目标是在缓存中预测并优化存储文件, 以最大限度地增加缓存点击的总数。 我们提议 $\ textt{LeadCache}$ - 一种基于“ 跟踪” 的在线缓存政策。 我们显示, 该政策是遗憾- 最佳到 $\ tillde{O} (n ⁇ 3/8}) 的因子。 如果请求的文件至少以与用户数量相联的缓存中一个缓存文件。 我们通过设计新的线性时间 Pippage 圆算算法来实施该政策。 加上一个强有力的法律类型假设, 我们显示基于 $\ textt{LeadCachet} 模式的文档获取的总量仍然几乎是有限的。 此外, 我们用正式的列表式政策来得出一种严格、 直观的列表。