Power consumption is the major cost factor in data centers. It can be reduced by dynamically right-sizing the data center according to the currently arriving jobs. If there is a long period with low load, servers can be powered down to save energy. For identical machines, the problem has already been solved optimally by Lin et al. (2013) and Albers and Quedenfeld (2018). In this paper, we study how a data-center with heterogeneous servers can dynamically be right-sized to minimize the energy consumption. There are $d$ different server types with various operating and switching costs. We present a deterministic online algorithm that achieves a competitive ratio of $2d$ as well as a randomized version that is $1.58d$-competitive. Furthermore, we show that there is no deterministic online algorithm that attains a competitive ratio smaller than $2d$. Hence our deterministic algorithm is optimal. In contrast to related problems like convex body chasing and convex function chasing, we investigate the discrete setting where the number of active servers must be integral, so we gain truly feasible solutions.
翻译:电耗是数据中心的主要成本因素。 根据当前到达的工作岗位, 可以通过动态右侧对数据中心进行数据中心进行配置来降低电耗。 如果有长期的低负荷, 服务器可以降电以节省能源。 对于相同的机器, Lin 等人( 2013 ) 和 Albers 和 Quedenfeld ( 2018 ) 已经最佳地解决了这个问题。 在本文中, 我们研究的是, 一个拥有不同服务器的数据中心如何能够动态地进行适当规模以最大限度地减少能源消耗。 有不同的服务器类型, 有不同的操作和转换成本。 我们提出了一个确定性在线算法, 实现2美元的竞争比率以及1.58美元竞争性的随机版本。 此外, 我们还显示, 没有一种确定性在线算法, 达到低于2美元的竞争比率。 因此, 我们的确定性算法是最佳的。 与 Convex 身体追逐和 convex 函数追逐等相关问题相比, 我们研究一个离散的设置, 需要多少个服务器是不可或缺的, 因此我们得到真正可行的解决方案 。