We investigate the polynomial-time approximability of the multistage version of Min-Sum Set Cover ($\mathrm{DSSC}$), a natural and intriguing generalization of the classical List Update problem. In $\mathrm{DSSC}$, we maintain a sequence of permutations $(\pi^0, \pi^1, \ldots, \pi^T)$ on $n$ elements, based on a sequence of requests $(R^1, \ldots, R^T)$. We aim to minimize the total cost of updating $\pi^{t-1}$ to $\pi^{t}$, quantified by the Kendall tau distance $\mathrm{D}_{\mathrm{KT}}(\pi^{t-1}, \pi^t)$, plus the total cost of covering each request $R^t$ with the current permutation $\pi^t$, quantified by the position of the first element of $R^t$ in $\pi^t$. Using a reduction from Set Cover, we show that $\mathrm{DSSC}$ does not admit an $O(1)$-approximation, unless $\mathrm{P} = \mathrm{NP}$, and that any $o(\log n)$ (resp. $o(r)$) approximation to $\mathrm{DSSC}$ implies a sublogarithmic (resp. $o(r)$) approximation to Set Cover (resp. where each element appears at most $r$ times). Our main technical contribution is to show that $\mathrm{DSSC}$ can be approximated in polynomial-time within a factor of $O(\log^2 n)$ in general instances, by randomized rounding, and within a factor of $O(r^2)$, if all requests have cardinality at most $r$, by deterministic rounding.
翻译:我们调查了Min-Sum Set多阶段版本的多阶段值( mathrm{ DSSC}$) 的多阶段值( mathrm{ DSSC} $), 经典列表更新问题的自然和有趣的一般化 。 在 $\ mathrm{ DSSC} 美元中, 我们维持一个以美元为单位的排列序列 $( pis%0, 1, rdot,\pist) 。 以美元为单位的请求序列 ( R%1, rdots) 。 我们的目标是将更新美元为美元的总成本降至 $\ dSD-1} 美元, 美元为美元为美元 美元 美元 。 以美元为单位( 美元为单位, 以美元为单位, 美元为美元, 以美元为单位, 美元为美元 。