Out-of-domain (OOD) generalization is a significant challenge for machine learning models. Many techniques have been proposed to overcome this challenge, often focused on learning models with certain invariance properties. In this work, we draw a link between OOD performance and model calibration, arguing that calibration across multiple domains can be viewed as a special case of an invariant representation leading to better OOD generalization. Specifically, we show that under certain conditions, models which achieve \emph{multi-domain calibration} are provably free of spurious correlations. This leads us to propose multi-domain calibration as a measurable and trainable surrogate for the OOD performance of a classifier. We therefore introduce methods that are easy to apply and allow practitioners to improve multi-domain calibration by training or modifying an existing model, leading to better performance on unseen domains. Using five datasets from the recently proposed WILDS OOD benchmark, as well as the Colored MNIST dataset, we demonstrate that training or tuning models so they are calibrated across multiple domains leads to significantly improved performance on unseen test domains. We believe this intriguing connection between calibration and OOD generalization is promising from both a practical and theoretical point of view.


翻译:对机器学习模型来说,外域( OOD) 常规化是一个巨大的挑战。 许多技术已经提出来克服这一挑战, 往往侧重于具有某些差异特性的学习模型。 在这项工作中, 我们将OOD性能和模型校准联系起来, 认为对多个域的校准可以被视为一个特殊的例子, 一种无差异的表达方式, 导致改善 OOD 的概括化。 具体地说, 我们表明, 在某些条件下, 实现 emph{ 多重- 多域校准的模型是没有虚假的关联的。 这导致我们提出多域校准, 作为可测量师 OOD 性能的可测量和可训练的替代工具。 因此, 我们引入了易于应用的方法, 并允许从业人员通过培训或修改现有模型改进多域校准, 从而改进 OOO 的多域校准。 我们用最近提议的WILDS OOD基准的五个数据集, 以及有色的MNIST数据集, 我们证明这些模型在多个域校准中经过校准, 和有希望的轨道校准, 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
深度学习目标检测方法综述
专知会员服务
271+阅读 · 2020年8月1日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
8+阅读 · 2020年8月30日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员