The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. As manual bug assignment is a labor-intensive task, especially for large-scale software projects, many machine-learning-based approaches have been proposed to automatically triage bug reports. Although developer collaboration networks (DCNs) are dynamic and evolving in the real-world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample local topological structures in a graph with two sampling strategies by considering both node importance and edge importance. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of dynamic DCNs. We evaluated our approach's effectiveness by comparing it with several state-of-the-art graph representation learning methods in two domain-specific tasks that belong to node classification. In the two tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods.
翻译:错误处理程序是将错误报告分配给最合适的开发者的一个基本过程,它与软件开发的质量和成本密切相关。由于人工错误分配是一项劳动密集型任务,特别是大型软件项目,因此许多基于机器学习的方法被提议自动筛选错误报告。虽然开发者协作网络(DCNs)在现实世界中是动态的,并不断演化,但大多数自动错误处理方法侧重于一次性切片中静态投影图。此外,以往的研究都没有考虑开发者之间的定期互动。为了解决上述问题,在本篇文章中,我们提出了一个新的空间-时平流动态图神经网络(ST-DGNN)框架,包括一个联合随机行走(JRWalk)机制和一个图表经常性神经网络(GRCNN)模型。特别是,JRWalk的目的是通过考虑到节点重要性和边缘重要性,用一个图表对本地地形结构进行抽样抽样,GRCNNN有3个组件与同一结构,即:每小时、每日、每日和每周两个周期的大型网络神经网络神经网络(ST-D-L-I-Ialalalal-ressimal ress ress ex resignal resignal ex resign ex resign resulation ex ex ex ex resulation ex ex ex ex ex ex ex ex ex ex ex ex resut des des des des des des des des the des des des des des des des des des des des des ialtiplue des des des des des des des des des des des des the des des des des des the des the des des des des des des des the des the des exal exal exal ex exal exal exal exal exal exal exal exal ex ex ex exal labal des des des ex ex ex ex ex ex ex ex ex ex ex exememet ial ex ex ex ex ex