We present methods for computing the generalized polar decomposition of a matrix based on the dynamically weighted Halley (DWH) iteration. This method is well established for computing the standard polar decomposition. A stable implementation is available, where matrix inversion is avoided and QR decompositions are used instead. We establish a natural generalization of this approach for computing generalized polar decompositions with respect to signature matrices. Again the inverse can be avoided by using a generalized QR decomposition called hyperbolic QR decomposition. However, this decomposition does not show the same favorable stability properties as its orthogonal counterpart. We overcome the numerical difficulties by generalizing the CholeskyQR2 method. This method computes the standard QR decomposition in a stable way via two successive Cholesky factorizations. An even better numerical stability is achieved by employing permuted graph bases, yielding residuals of order $10^{-14}$ even for badly conditioned matrices, where other methods fail.
翻译:我们提出基于动态加权 Halley (DWH) 变异的矩阵普遍极分解计算方法。 这个方法在计算标准极分解时已经很确定。 一种稳定的执行方法可以使用, 避免矩阵反转, 并代之以QR分解。 我们为计算与签名矩阵有关的普遍极分解建立一种自然的通用方法。 使用称为双曲QR变异的通用 QR 分解法, 也可以避免反向。 但是, 这种分解并不显示与其正方对方相同的有利稳定性。 我们克服了数字上的困难, 常规化了 ChooleQR2 方法。 这种方法通过连续两次的Cholesky因子化以稳定的方式计算标准 QR 分解。 通过使用嵌入式的图形基础, 产生10 ⁇ -14} 美元的剩余, 即使在其他方法失效的情况下, 也实现了更稳定的数值稳定。