This manuscript is aimed at addressing several long standing limitations of dynamic mode decompositions in the application of Koopman analysis. Principle among these limitations are the convergence of associated Dynamic Mode Decomposition algorithms and the existence of Koopman modes. To address these limitations, two major modifications are made, where Koopman operators are removed from the analysis in light of Liouville operators (known as Koopman generators in special cases), and these operators are shown to be compact for certain pairs of Hilbert spaces selected separately as the domain and range of the operator. While eigenfunctions are discarded in this analysis, a viable reconstruction algorithm is still demonstrated, and the sacrifice of eigenfunctions realizes the theoretical goals of DMD analysis that have yet to be achieved in other contexts. The manuscript concludes with the description of a Dynamic Mode Decomposition algorithm that converges when a dense collection of occupation kernels, arising from the data, are leveraged in the analysis.
翻译:该手稿旨在解决在应用Koopman分析过程中动态模式分解的若干长期限制,这些限制的原则包括相关动态模式分解算法的趋同和Koopman模式的存在。为解决这些限制,做了两项重大修改,根据Liouville操作员的分析(在特殊情况下称为Koopman发电机),Koopman操作员被从分析中删除,这些操作员被证明对作为操作员的域和范围分别选择的某些对Hilbert空间进行压缩。虽然在本分析中废弃了机能,但仍展示了可行的重建算法,而机能的牺牲则实现了DMD分析的理论目标,而这些理论目标在其他情况下尚未实现。手稿最后描述了动态模式分解算法的描述,即在分析中利用了从数据中产生的密集的占用内核集合时,这种动态模式分解算法的趋同。