Given an $\omega$-automaton and a set of word homomorphisms, we look at which accepted words have such a substitutive structure, and in particular if there is at least one. We introduce a method using desubstitution of $\omega$-automata to describe the structure of preimages of accepted words under arbitrary sequences of homomorphisms: this takes the form of a meta-$\omega$-automaton. We decide the existence of an accepted purely substitutive word, as well as the existence of an accepted fixed point. In the case of multiple substitutions (non-erasing homomorphisms), we decide the existence of an accepted infinitely desubstitutable word, with possibly some constraints on the sequence of substitutions (e.g. Sturmian words or Arnoux-Rauzy words). As an application, we decide when a set of finite words codes e.g. a Sturmian word. As another application, we also show that if an $\omega$-automaton accepts a Sturmian word, it accepts the image of the full shift under some Sturmian morphism.
翻译:给定一个 $\omega $ 自动机和一组字同态,我们研究那些接受词语是否具有这样的替代结构,特别是是否至少有一个。我们介绍了一种使用 $\omega $ -自动机的去替代描述接受词语在任意序列字同态下 的前像的结构的方法:这采用元-$\omega $-自动机的形式。我们决定已接受的纯替代词存在性,以及已接受的固定点存在性。在多个替换的情况下(不是消元的字同态),我们决定是否存在已接受的无限去替代字,可能会对替换序列(例如Sturmian字或Arnoux-Rauzy字)有一些限制。作为一个应用,我们决定了一组有限词汇是否编码了一个 Sturmian 词。作为另一个应用,我们还表明,如果一个 $\omega $ 自动机接受了一个 Sturmian 词,那么它接受了某个 Sturmian 映射下的完全移位的图像。