Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms. These methods, thus, are unreliable as SfM algorithms often fail or produce erroneous poses on challenging videos with highly dynamic objects, poorly textured surfaces, and rotating camera motion. We address this robustness issue by jointly estimating the static and dynamic radiance fields along with the camera parameters (poses and focal length). We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.
翻译:动态光亮场重建方法旨在模拟一个动态场景的时间变化结构和外观。 但是,现有的方法假设,精确的相机配置可以由动态(SfM)算法的结构来可靠地估算。因此,这些方法不可靠,因为SfM算法常常失败,或者在充满挑战的视频上产生错误配置,这些视频带有高度动态的物体,纹理面差,以及旋转的相机运动。我们通过联合估计静态和动态光亮场以及相机参数(位置和焦距)来应对这个强度问题。我们通过广泛的定量和定性实验来展示我们的方法的稳健性。我们的结果显示,相对于最先进的动态视图合成方法,我们的工作表现优于最先进的动态视图合成方法。