Multilingual language models have been a crucial breakthrough as they considerably reduce the need of data for under-resourced languages. Nevertheless, the superiority of language-specific models has already been proven for languages having access to large amounts of data. In this work, we focus on Catalan with the aim to explore to what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models. For this, we: (1) build a clean, high-quality textual Catalan corpus (CaText), the largest to date (but only a fraction of the usual size of the previous work in monolingual language models), (2) train a Transformer-based language model for Catalan (BERTa), and (3) devise a thorough evaluation in a diversity of settings, comprising a complete array of downstream tasks, namely, Part of Speech Tagging, Named Entity Recognition and Classification, Text Classification, Question Answering, and Semantic Textual Similarity, with most of the corresponding datasets being created ex novo. The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource, together with the clean textual corpus, the language model, and the cleaning pipeline. Using state-of-the-art multilingual models and a monolingual model trained only on Wikipedia as baselines, we consistently observe the superiority of our model across tasks and settings.


翻译:多种语言模式是一个重要的突破,因为它们大大减少了对资源不足语言的数据需求,然而,对于能够获取大量数据的语文而言,已经证明特定语言模式的优越性,但具体语言模式的优越性已经证明,在这项工作中,我们侧重于加泰罗尼亚,目的是探索中型单一语言模式与最先进的大型多语文模式相比具有多大程度的竞争力。在这方面,我们:(1) 建立一个清洁、高质量的加泰罗尼亚文本(CaText),这是迄今为止最大的(但只是以前单一语言模式中工作通常规模的一小部分),(2) 为加泰罗兰(BERTA)培训一个基于变异语言模式,(3) 设计一个在多种环境下的彻底评价,包括一系列完整的下游任务,即 " 标注语音 " 、 " 名称实体识别和分类 " 、 " 语言分类 " 、 " 问题解答 " 和 " 语义性文本相似 " (Semanical Textalityality),大多数相应的数据集都是以创新方式创建的。 结果是一个新的基准,即卡泰罗兰语言理解基准(CLUB),我们仅以公开的版本和多语言模式作为公开的模板,并共同出版。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员