As ChatGPT et al. conquer the world, the optimal liability framework for AI systems remains an unsolved problem across the globe. In a much-anticipated move, the European Commission advanced two proposals outlining the European approach to AI liability in September 2022: a novel AI Liability Directive and a revision of the Product Liability Directive. They constitute the final cornerstone of EU AI regulation. Crucially, the liability proposals and the EU AI Act are inherently intertwined: the latter does not contain any individual rights of affected persons, and the former lack specific, substantive rules on AI development and deployment. Taken together, these acts may well trigger a Brussels Effect in AI regulation, with significant consequences for the US and beyond. This paper makes three novel contributions. First, it examines in detail the Commission proposals and shows that, while making steps in the right direction, they ultimately represent a half-hearted approach: if enacted as foreseen, AI liability in the EU will primarily rest on disclosure of evidence mechanisms and a set of narrowly defined presumptions concerning fault, defectiveness and causality. Hence, second, the article suggests amendments, which are collected in an Annex at the end of the paper. Third, based on an analysis of the key risks AI poses, the final part of the paper maps out a road for the future of AI liability and regulation, in the EU and beyond. This includes: a comprehensive framework for AI liability; provisions to support innovation; an extension to non-discrimination/algorithmic fairness, as well as explainable AI; and sustainability. I propose to jump-start sustainable AI regulation via sustainability impact assessments in the AI Act and sustainable design defects in the liability regime. In this way, the law may help spur not only fair AI and XAI, but potentially also sustainable AI (SAI).


翻译:由于ChatGPT et al. 征服了全世界,AI系统的最佳赔偿责任框架仍然是全球尚未解决的问题。在一项期待已久的举动中,欧盟委员会于2022年9月提出了两项提案,概述了欧洲对AI责任的处理方法,一项新的AI责任指令和产品责任指令的修订,它们构成了欧盟AI条例的最后基石。关键的是,责任提案和欧盟AI法本质上相互交织:后者并不包含受影响者的任何个人权利,前者在AI的开发和部署方面缺乏具体的实质性规则。综合起来,这些行为很可能引发AI条例中的布鲁塞尔效果,给美国和其他地方带来严重后果。本文件提出了三项新的贡献。首先,它详细审查了欧盟委员会的建议,并表明,在朝着正确方向采取步骤的同时,它们最终代表了一种半心全心不意的做法:如果按预期颁布,欧盟的AI赔偿责任建议将主要依赖于披露证据机制和一套关于错误、缺陷和因果关系的狭义的推定。因此,第二,该条建议修正,在本文结尾的附件中收集的,但并非对AI的公平性,而是对AI的公平性评估;第三,根据对未来责任框架进行的一项关键设计框架的分析,对AI的延伸提出了一项责任定义。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员