Adapters have emerged as a modular and parameter-efficient approach to (zero-shot) cross-lingual transfer. The established MAD-X framework employs separate language and task adapters which can be arbitrarily combined to perform the transfer of any task to any target language. Subsequently, BAD-X, an extension of the MAD-X framework, achieves improved transfer at the cost of MAD-X's modularity by creating "bilingual" adapters specific to the source-target language pair. In this work, we aim to take the best of both worlds by (i) fine-tuning task adapters adapted to the target language(s) (so-called "target language-ready" (TLR) adapters) to maintain high transfer performance, but (ii) without sacrificing the highly modular design of MAD-X. The main idea of "target language-ready" adapters is to resolve the training-vs-inference discrepancy of MAD-X: the task adapter "sees" the target language adapter for the very first time during inference, and thus might not be fully compatible with it. We address this mismatch by exposing the task adapter to the target language adapter during training, and empirically validate several variants of the idea: in the simplest form, we alternate between using the source and target language adapters during task adapter training, which can be generalized to cycling over any set of language adapters. We evaluate different TLR-based transfer configurations with varying degrees of generality across a suite of standard cross-lingual benchmarks, and find that the most general (and thus most modular) configuration consistently outperforms MAD-X and BAD-X on most tasks and languages.


翻译:暂无翻译

0
下载
关闭预览

相关内容

粤港澳大湾区数字经济研究院是一家面向人工智能、数字经济产业和前沿科技的国际化创新型研究机构,坐落于深圳市深港科技创新合作区内。IDEA正与 MSR、Google Brain、DeepMind、OpenAI 等同行者一起推动人类 AI 技术前沿的发展。IDEA 的使命是立足社会需求,研发颠覆式创新技术并回馈社会,让更多的人从数字经济发展中获益。IDEA 秉承共享共赢共生的开源开放精神,积极营造自由而富有激情的创新工作环境,聚集全世界最聪慧的大脑一起创造人类社会最需要的价值。我们坚持科技擎天,产业立地,相信最好的研究从需求中来,到需求中去,最终惠及广大企业和受众。 IDEA 目前已聚集一批包括院士、世界著名大学教授、世界知名开源系统发明人在内的国际一流技术专家,致力于在 AI 基础技术与开源系统、人工智能金融科技、区块链技术与可信计算、企业级 AI 系统、产业智能物联网与智能机器人等领域研发国际顶尖成果,并培育一批国际领先科技企业,带动深圳乃至大湾区万亿级数字经济产业发展。 AIPT(AI 平台技术研究中心)致力于建设支撑人工智能算法、算力和数据的平台,通过具体项目的研发、实施和部署来推进 AI 技术的落地和产业化,团队成立以来,已发布 ReadPaper 论文阅读平台、BIOS 医疗知识图谱两款产品。AIPT 负责人-谢育涛曾任微软公司技术合伙人兼微软(中国)操作系统工程院院长。谢育涛在微软公司工作 20 余年,先后在微软美国总部的 Microsoft Office 产品组、必应团队、微软亚洲互联网工程院以及微软(中国)操作系统工程院、人工智能和云计算等多个研发部门担任重要职务。他在操作系统、搜索技术、人工智能、应用及服务领域拥有丰富的技术与管理经验。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员