Monte Carlo (MC) methods are the most widely used methods to estimate the performance of a policy. Given an interested policy, MC methods give estimates by repeatedly running this policy to collect samples and taking the average of the outcomes. Samples collected during this process are called online samples. To get an accurate estimate, MC methods consume massive online samples. When online samples are expensive, e.g., online recommendations and inventory management, we want to reduce the number of online samples while achieving the same estimate accuracy. To this end, we use off-policy MC methods that evaluate the interested policy by running a different policy called behavior policy. We design a tailored behavior policy such that the variance of the off-policy MC estimator is provably smaller than the ordinary MC estimator. Importantly, this tailored behavior policy can be efficiently learned from existing offline data, i,e., previously logged data, which are much cheaper than online samples. With reduced variance, our off-policy MC method requires fewer online samples to evaluate the performance of a policy compared with the ordinary MC method. Moreover, our off-policy MC estimator is always unbiased.


翻译:蒙特卡罗(Monte Carlo, MC)方法是最常用的评估政策性能的方法。对于给定的政策,MC方法通过反复运行该政策来收集样本,并取得结果的平均值来给出估计。在此过程中收集到的样本称为在线样本。为了得到准确的估计,MC方法需要消耗大量的在线样本。当在线样本比较昂贵时,例如在线推荐和库存管理,我们希望在保持相同的估计准确性的同时减少在线样本数量。为此,我们使用离线MC方法通过运行不同的策略(行为策略)对所需策略进行评估。我们设计出一种特定的行为策略,使得离线MC估计器的方差比普通MC估计器的方差小。重要的是,这种定制的行为策略可以从现有的离线数据(即先前记录的数据)中高效地学习,而这比在线样本要便宜得多。通过减小方差,我们的离线MC方法比普通MC方法需要更少的在线样本来评估政策的表现。此外,我们的离线MC估计器始终是无偏的。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
15+阅读 · 2021年8月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员