Biofilms pose significant problems for engineers in diverse fields, such as marine science, bioenergy, and biomedicine, where effective biofilm control is a long-term goal. The adhesion and surface mechanics of biofilms play crucial roles in generating and removing biofilm. Designing customized nano-surfaces with different surface topologies can alter the adhesive properties to remove biofilms more easily and greatly improve long-term biofilm control. To rapidly design such topologies, we employ individual-based modeling and Bayesian optimization to automate the design process and generate different active surfaces for effective biofilm removal. Our framework successfully generated ideal nano-surfaces for biofilm removal through applied shear and vibration. Densely distributed short pillar topography is the optimal geometry to prevent biofilm formation. Under fluidic shearing, the optimal topography is to sparsely distribute tall, slim, pillar-like structures. When subjected to either vertical or lateral vibrations, thick trapezoidal cones are found to be optimal. Optimizing the vibrational loading indicates a small vibration magnitude with relatively low frequencies is more efficient in removing biofilm. Our results provide insights into various engineering fields that require surface-mediated biofilm control. Our framework can also be applied to more general materials design and optimization.
翻译:生物胶片对海洋科学、生物能源和生物医学等各个领域的工程师造成了重大问题,在其中,有效的生物胶片控制是一个长期目标。生物胶片的粘合和表面机械在生物胶片的产生和去除方面起着关键作用。设计有不同表面地形的定制纳米表面可以改变粘合特性,以便更容易地清除生物胶片,大大改进长期生物胶片控制。为了迅速设计这种地形,我们采用个人模型和巴耶斯优化来将设计过程自动化,并产生不同的活跃表面,以便有效地清除生物胶片。我们的框架成功地产生了理想的纳米表面,通过应用剪切片和振动来去除生物胶片。大量分布的短柱岩表层地形是防止生物胶片形成的最佳测量方法。在流动剪切下,最佳的地形学是分散地分配高、薄质、类似柱状的结构。当受到垂直或末级的振动,发现厚的嵌入式相相相相相相系为最佳方法。优化的振动式装制成过程成功地产生了理想的纳米面表层表层,并且以较低的图像化为我们较高效的地面结构,也要求以较低的地面进行更小的图像化,从而更精确地进行生物平整。