Garments with the ability to provide kinesthetic force-feedback on-demand can augment human capabilities in a non-obtrusive way, enabling numerous applications in VR haptics, motion assistance, and robotic control. However, designing such garments is a complex, and often manual task, particularly when the goal is to resist multiple motions with a single design. In this work, we propose a computational pipeline for designing connecting structures between active components - one of the central challenges in this context. We focus on electrostatic (ES) clutches that are compliant in their passive state while strongly resisting elongation when activated. Our method automatically computes optimized connecting structures that efficiently resist a range of pre-defined body motions on demand. We propose a novel dual-objective optimization approach to simultaneously maximize the resistance to motion when clutches are active, while minimizing resistance when inactive. We demonstrate our method on a set of problems involving different body sites and a range of motions. We further fabricate and evaluate a subset of our automatically created designs against manually created baselines using mechanical testing and in a VR pointing study.
翻译:能够按需提供运动力回击的外衣配色能够以非侵扰方式增强人的能力,使VR机能、运动协助和机器人控制等多种应用成为可能。然而,设计这种服装是一项复杂而且往往是手工的任务,特别是当目标是用单一的设计来抵制多重运动时。在这项工作中,我们提议了设计活动部件之间连接结构的计算管道,这是这方面的中心挑战之一。我们侧重于在被动状态下顺从的电动离合器,同时在激活时强烈抵制延长。我们的方法自动计算最佳的连接结构,以有效抵制一系列预先确定的机体需求动议。我们提出了一个新的双重目标优化方法,以便在握手时同时最大限度地抵制运动,同时在不活动时尽量减少阻力。我们展示了涉及不同身体地点和一系列运动的一系列问题的方法。我们用机械测试和VR指针研究进一步构建和评估了我们根据人工创造的基线而自动创造出来的设计的一部分。